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Abstract Using the Wmg-Ting model and including the influence of the thermal fluctuation 
on the flux motion, we have performed numerical simulation of the scaling behaviour in the 
negative HdI resistivity region of the high-T, superconducton for the first time. A scaling law 
with an exponent f3 - 1.7 at low magnetic fields has been found in our simulation for the YECO 
system, which is in good agreement with the experimenwl observation. 

The behaviour of Hall resistivity in the mixed state of high-T, superconductors is one of 
the most intriguing features in understanding flux dynamics, and stimulates a great deal of 
interest. The sign reversal of Hall resistivity p,, in low magnetic fields and at temperatures 
close to but below the superconducting transition temperature Tc has been observed in many 
high-T, materials [l-71, as well as in some low-temperature superconductors [8]. Moreover, 
the scaling behaviour of the positive Hall resistivity versus the longitudinal one has been 
found for both the temperature dependence in the TAFF region and the current dependence 
in the non-linear region: prs - pjX with @ - 2 [9,10]. Besides, in the region with the 
negative Hall resistivity, a scaling behaviour with p x 1.7 as a function of the temperature in 
YBCO film was reported by Luo et al [6]. How to satisfactorily explain the puzzling scaling 
behaviour and the sign reversal of Hall resistivity pxr is one of the hottest problems in this 
field and quite challenging. On one hand, there are several models proposed to explain 
the sign reversal [4,11-131. Within the approximation of neglecting the thermal fluctuation 
Wang and Ttng (WT) [ l l ]  had developed a theory in the framework of the BardeenStephen 
(BS) [14] and Nozikres-Vinen (NV) [15] approaches by taking into account the backRow 
current due to the pinning force. The obtained analytical results are qualitatively consistent 
with the experimental observations of negative Hall resistivity at low magnetic fields. In 
contrast to the WT model, Ferrell [12] suggested that the thermally excited quasiparticles 
colliding quasielastically with the hydrodynamic superfluid velocity field outside a vortex 
core, transfer momentum to the circulating velocity field, and such a process causes a sign 
of Hall angle opposite to that in the normal state. On the other hand, there exist two models 
to explain the scaling law for the Hall effect in the mixed state [16,17]. Dorsey and Fisher 
(DF) [16] hypothesized that the vortex-glass transition exists in the mixed state of a 3D 
vortex system with a random disorder, and attributed the scaling behaviour to a kind of 
general glassy scaling in the vicinity of the vortex-glass transition. An appropriate p - 1.7 
was produced by choosing the particle-hole asymmetry exponent A, - 3. Its demerit is 
that the observed scaling behaviour regime has to be restricted in a specific region near the 
vortex-glass transition temperature Ts. However, the probed temperature region in Luo et 
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al’s experiment [6] seems to be far from the T8. In addition, using DF theory it is difficult 
to explain the scaling behaviour observed in the BSCCO or TIBaCaCuO samples with larger 
anisotropy and closer to a 2D system because the vortex-glass transition does not exist in a 
two-dimensional (ZD) system at finite temperature. Recently, an alternative model has been 
proposed by Vinokur and co-workers 1171. They consider the scaling behaviour should be a 
general feature of any vortex state with disorder dominated dynamics, and derived a scaling 
relation px,, - L Y ~ ! ~  with ,!? being exactly equal to two and CY as an ad hoc parameter. It was 
claimed that the exponent ,!? is universal and independent of disorder and other parameters 
such as the temperature. the external magnetic field, and the applied current density. Their 
results seem to be in agreement with some experiments performed in the TAFF region within 
a certain range of the magnetic field [9, IO]. However, the parameter LY appearing in their 
force balance equation ((la) in their paper) was put into the model by hand and assumed 
to be independent of the pinning and the flux motion velocity in the TAW and creep region. 
In fact, in  the presence of pinnings, CY should in general depend on pinnings and/or the 
velocity, since the flux has a ‘normal core’ and there exists a backtlow current inside the 
core due to the pinning. In particular, LY could vary significantly in different temperature 
regions (including the case with the sign change) [18]. Thus, their model seems to be rather 
artificial. More importantly, neither model mentioned above is able to explain the sign 
reversal of pXJ. 

Very recently, based upon the Bs normal core model and by taking into account the 
effect of both the thermal fluctuation and backtlow in the core, Wang and co-workers [18] 
have proposed a unified theory for the mixed state Hall effect in type II superconductors, in 
which both the scaling behaviour with ,4 - 2 and the sign reversal of pxJ can be naturally 
explained for the first time. The analytical results derived there agree qualitatively with most 
essential features found in experiments on Hall resistivity in the mixed state. Although no 
analytical analysis for the scaling behaviour of the negative Hall resistivity is given in 
the theory, a basic equation to describe both the Hall and the longitudinal resistivities is 
presented so that numerical calculations could be made for different magnetic fields and 
temperature regimes in the presence of thermal fluctuations and random pinnings, which 
makes it possible to compare quantitatively (or at least, semiquantitatively) the theoretical 
results with the experimental observation, especially for the negative Hall resistivity region. 

Notice that the negative prr has been observed in many experiments for different high- 
T, superconducting materials (YBCO, TIBaCaCuO, BSCCO), but the sealing behaviour for 
the negative Hall resistivity with p - 1.7 has only been observed by Luo eta1 in the YBCO 
system [6]. One could naturally raise the following questions. (1) Does the scaling law still 
hold in this negative Hall region? (2 )  Is the exponent @ = 2 really universal? For example, 
with the temperature increasing further from the TAFF region the system will undergo a 
sign reversal of p,, from positive to negative and go into the negative px), region. At that 
moment does the fi value also undergo a change oc not? Is it still equal to two? In this 
paper, we will investigate these crucial problems by using the numerical simulation method 
due to the absence of an analytical solution to the equation of flux motion with the random 
pinnings and thermal fluctuations. 

In the negative Hall resistivity regime of the high-T, superconductors, the temperature is 
not too far below T, and the pinning potential can be comparatively low so that the thermal 
fluctuation will play a crucial role in assisting the motion of a flux within this region. In 
the presence of thermal fluctuations, the force balance equation for a single flux line can be 
derived as [I 1,18, IS] 
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where Fr and Fp are respectively thermal noise and pinning forces acting on the flux, 
F = N e ( v r  - v ~ )  x @O is the Magnus force with Nev,  = J as the applied cument along 
the x-direction, and @O is the flux quantum in the direction A (1 a b  plane). fdrag is the 
drag force which has the following form [ll, 18-20] 

(2) 

where VL is the velocity of the flux line, BO = &,H&with p, = se/m as the mobility 
of the charge carrier and Hc2 = @o/2nt2 being the usual upper critical field with 5 as 
the superconducting coherence length, and q = Ne@& = QoHfijp,, is the usual viscous 
coefficient with p. as the resistivity of the normal state. J7 = y(1 - Z / H f i )  with as the 
average magnetic field over the core and y as the parameter describing contact force on the 
surface of the core, which depends on ? in the following way, [ l l ] :  y - 0 (NV limit) for 
e[L < 1 and y - 1 (BS limit) for f / l  2 1 with 1 as the mean free path of the carrier. In 
detail, we rewrite equation (1) as 

fdng NevL X @o - ~ V L  + QoBo(1 - 7 ) J  - Bo(1 + ?)Fp X 6 

VL = FL + Fp + E  - Bo(l - V)FL x A - fio(l+ V)Fp x A (3) 

where FL = J x -30 is the Lorentz force. Equation (3) is rigorously derived in terms 
' of the well known normal core model, and the transverse term Fp x A is produced by 

the backflow current inside the normal core, which constitutes the essential physics of 
WT theory. In particular, it is worthwhile to mention that, in contrast with an argument 
in [17,21], the term a FL x n in equation (3) is believed not to to be in disagreement 
with any fundamental law because (i) in the effective force balance state, equation (3) can 
equivalently be expressed in different forms. which may contain a term a FL x n or a 
term v+ x n. Actually, there is no difference in final results for different forms. A simple 
but typical justification is that in terms of equation (3) which contains term FL x n, in 
the absence of pinnings and thermal noise, we are able to immediately recover BS ( y  = 1) 
and NV ( y  = 0) results which have been well accepted for many years. (ii) If the flux 
is completely pinned, which is the case discussed in [17] to support their argument, the 
total current inside the  core^ is equal to zero in our framework (i.e. Jjtt = J p  + JF) [l l] ,  
and thus there is no dissipation which stems from the in-normal core scattering of charge 
carriers with lattices. In view of equation (3), the point can also be understood by the fact 
that the total effective force (the terms on the RHs of equation (3)) acting on a flux from 
the superfluid, vanishes in the cases both 11 and I J ,  thus the net force on the superfluid 
from a pinned vortex is zero as well. 

So far, we have had a basic equation like equation (3) to describe the flux motion in 
the presence of thermal fluctuations and pinning. The x and y components of the equation 
can be written as 

V J ~  = h @ o ( l -  F ) J  + Fpx + F:   BO(^ + Y)Fp), 

V V L ~  = -@oJ + Fpy + FTy + @o(l + Y ) F p x .  
(4) 

It is non-trivial, in general, to solve u k  and U L ~  in equation (4). Although, as shown 
in [lS], it is unnecessary to solve equation (4) in detail to show qualitatively the scaling 
behaviour of the positive pxy as well as the sign reversal of Hall resistivity, in order to 
analyse the scaling behaviour in different temperature regions and to make comparison with 
the experimental observations, it is important to solve equation (4) numerically. 

Because of the inhomogeneities in the materials, the pinning potential is always a 
random potential (here, the magnetic field H I ab plane). The vortex mobility should be 
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determined by the combined effects of both the random pinning potential and the random 
thermal fluctuations. As usual, Fp is considered to be produced by interaction of the vortex 
with a number of pinning centres randomly positioned at Rj and the individual pinning 
wells are chosen as the Gaussian form. Thus the following pinning potential is employed 
in the simulation: 

Jinming Dong and Z D Wang 

u~(T) = A, C e x p ( - l r  - Ri12/tjj,) (5) 

where the amplitude A, is the effective condensation energy stored in the vortex core 
per unit length, A,  = (H2/8n)(l - b)c:b [ZZ]. Here, cub represents the Ginzburg- 
Landau coherence length in the ab plane and b = H / H a ( T ) .  Following the algorithm 
developed by Brass and Jensen [ZZ], we can use the same algorithm to solve numerically 
equation (4) in a two-dimensional system having 400 pinning sites and a side length of 
40 times the coherence length with a periodic boundary condition. Notice that the 
parameter y is argued as a rapidly varying function of temperature around a characteristic 
temperature TO [I I]. In order to simulate this behaviour, it is convenient to suppose here that 
y = (e'"('~'-')+l)-' with a0 >> 1, where to = To/T, aad t = T/T ,  are reduced temperatures. 
As usual, for YBCO material, we take t h ( O )  = 27 A, H,?(O) = 127 T, HJO) = 2.72 T; . 
c&(t) = tub(0)(1 - t*)-'/2, Hc(r) = H,(o)(~ - t2) and ~ ~ 2 ( r )  = ~ ~ 2 ( 0 ) ( 1  - t 2 )  in our 
simulation. Other parameters are chosen to be reasonable values: TO = 65 K, 010 = 30, 
because the precise values are unimportant for the scaling. 

Figure 1. Longitudinal (a) and Hall (b) resistivity against temperature for different magnetic 
fields 1.5 T md 4 T; G-, 1.5 T; 0--, 4 T. 

The calculated results for prx, psy and the scaling behaviour are shown in figures 1 and 

(1) The temperature dependence of pxy is qualitatively consistent with experimental 
observations, i.e. existence of a negative minimum at a certain temperature. The magnetic 
field dependence of psy exhibits monotonically increasing behaviour with increasing field 
below 4 T [23]. Although we did not cany out our simulation on pxr for higher fields 
we may expect that its field dependence will have a maximum value due to decreasing of 
the pinning potential with increasing field, so reducing the negative Hall resistivity in o u  

2. From these figures we can anive at the following points: 
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framework, which seems not to be inconsistent with the experimental facts in YBCO samples 
[61. 

(2) From lpxy[ against pxx on a log-log plot at fixed field 1.5 T and 4 T shown 
in figure 2, a power law relationship in this negative Hall resistivity region is clearly 
demonstrated. The scaling exponent ,5' - 1.7 can be found from the data for both fields. 
Also, the region showing the scaling behaviour becomes wider for higher magnetic field, 
which is qualitatively consistent with Luo et al's experiment [6]. However, it should be 
pointed out that the scaling lines have been collapsed to two distinct scaling curves with 
slightly different scaling exponents which is more obvious for higher fields. The portion 
in the lower-temperature region being much closer to T, has a smaller exponent. This 
phenomenon is different from that in the TAW region where no such kind of break has been 
observed. At the present time, because there is only one experimental data point for the 
scaling behaviour in the negative Hall effect (i.e. Luo et al's result 161) we are unable to 
discuss further this collapse of the scaling curve. However, if we look carefully at Luo et 
al's result (figure 3 in their paper) [6]  it seems that the break also exists in their observation, 
and could be identified (the scale of the ordinate in their figure 3 is too large to make this 
identification). As it is shown obviously in figure 2 that the collapse point is very close to 
the glass transition temperature T, (about 1 K from Tg), we may conjecture that it may be 
caused by the significant fluctuation near the glass phase transition. 

At this stage, we can conclude the following. (i) The WT model including a thermal 
noise term can give negative Hall resistivity at lower magnetic fields in a certain range of 
temperature, and its temperature dependence is rather well consistent with the experimental 
observations. More importantly, the scaling behaviour of negative p,, can also be obtained 
in the WT model, which provides a strong support to the viewpoint that the effect of the 
backflow current on Hall resistivity due to pinning is crucial. It is noted that there has 
so~far  been only one model [I81 able to give a unified explanation of both the negative 
Hall effect and the scaling behaviour. (ii) The exponent ,5' obtained in our simulation on 
negative Hall effect is equal to - 1.7 f 0.1, which is in good agreement with Luo et al's 
experimental value (- 1.7f0.2). It may demonstrate that the scaling relation is a universal 
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phenomenon over different temperature regions, from TAW, flux creep to flux flow, which 
may be mainly caused by the time _reversal symmetry of the pinning potential [17,18]. 
However, with increasing temperature, the temperature dependence of a will play a more 
and more important role in the scaling behaviour and cannot be neglected any longer, which 
may cause deviation of j3 from the ‘value of two and produce the collapse of the scaling 
curve. Thus, in the creep region the value of ,3 should not be a universal constant, but a 
sample dependent constant. It could be equal to different values smaller than two or larger 
than two. 

Finally, it is worth pointing out that the relation (Fpio.i) = -r(u)vL [17,18] is not 
assumed in the present simulation, which is one of key points in the analytical derivation 
[17,18] of the scaling relation. It is known that analytical determination of the average 
pinning force is a highly non-trivial issue, which is also true in numerical simulations as 
well although maybe it is easier than that in  the analytical method. More precisely numerical 
determination of the average pinning force is not the task of this paper and will be left for 
future investigation. 
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